Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(1): eadj1120, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170765

RESUMO

The dual role of CD8+ T cells in influenza control and lung pathology is increasingly appreciated. To explore whether protective and pathological functions can be linked to specific subsets, we dissected CD8+ T responses in influenza-infected murine lungs. Our single-cell RNA-sequencing (scRNA-seq) analysis revealed notable diversity in CD8+ T subpopulations during peak viral load and infection-resolved state. While enrichment of a Cxcr3hi CD8+ T effector subset was associated with a more robust cytotoxic response, both CD8+ T effector and central memory exhibited equally potent effector potential. The scRNA-seq analysis identified unique regulons regulating the cytotoxic response in CD8+ T cells. The late-stage CD8+ T blockade in influenza-cleared lungs or continuous CXCR3 blockade mitigated lung injury without affecting viral clearance. Furthermore, adoptive transfer of wild-type CD8+ T cells exacerbated influenza lung pathology in Cxcr3-/- mice. Collectively, our data imply that CXCR3 interception could have a therapeutic effect in preventing influenza-linked lung injury.


Assuntos
Influenza Humana , Lesão Pulmonar , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Pulmão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Quimiocinas
2.
Nat Commun ; 14(1): 7420, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973875

RESUMO

Responses of cells to stimuli are increasingly discovered to involve the binding of sequence-specific transcription factors outside of known target genes. We wanted to determine to what extent the genome-wide binding and function of a transcription factor are shaped by the cell type versus the stimulus. To do so, we induced the Heat Shock Response pathway in two different cancer cell lines with two different stimuli and related the binding of its master regulator HSF1 to nascent RNA and chromatin accessibility. Here, we show that HSF1 binding patterns retain their identity between basal conditions and under different magnitudes of activation, so that common HSF1 binding is globally associated with distinct transcription outcomes. HSF1-induced increase in DNA accessibility was modest in scale, but occurred predominantly at remote genomic sites. Apart from regulating transcription at existing elements including promoters and enhancers, HSF1 binding amplified during responses to stimuli may engage inactive chromatin.


Assuntos
Proteínas de Ligação a DNA , Neoplasias , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição/metabolismo , Resposta ao Choque Térmico/genética , Cromatina/genética , Neoplasias/genética
3.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676733

RESUMO

Donor-recipient (D-R) mismatches outside of human leukocyte antigens (HLAs) contribute to kidney allograft loss, but the mechanisms remain unclear, specifically for intronic mismatches. We quantified non-HLA mismatches at variant-, gene-, and genome-wide scales from single nucleotide polymorphism (SNP) data of D-Rs from 2 well-phenotyped transplant cohorts: Genomics of Chronic Allograft Rejection (GoCAR; n = 385) and Clinical Trials in Organ Transplantation-01/17 (CTOT-01/17; n = 146). Unbiased gene-level screening in GoCAR uncovered the LIMS1 locus as the top-ranked gene where D-R mismatches associated with death-censored graft loss (DCGL). A previously unreported, intronic, LIMS1 haplotype of 30 SNPs independently associated with DCGL in both cohorts. Haplotype mismatches showed a dosage effect, and minor-allele introduction to major-allele-carrying recipients showed greater hazard of DCGL. The LIMS1 haplotype and the previously reported LIMS1 SNP rs893403 are expression quantitative trait loci (eQTL) in immune cells for GCC2 (not LIMS1), which encodes a protein involved in mannose-6-phosphase receptor (M6PR) recycling. Peripheral blood and T cell transcriptome analyses associated the GCC2 gene and LIMS1 SNPs with the TGF-ß1/SMAD pathway, suggesting a regulatory effect. In vitro GCC2 modulation impacted M6PR-dependent regulation of active TGF-ß1 and downstream signaling in T cells. Together, our data link LIMS1 locus D-R mismatches to DCGL via GCC2 eQTLs that modulate TGF-ß1-dependent effects on T cells.


Assuntos
Transplante de Rim , Humanos , Fator de Crescimento Transformador beta1/genética , Rejeição de Enxerto/genética , Rim , Doadores de Tecidos , Antígenos HLA , Sobrevivência de Enxerto/genética , Proteínas de Membrana , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/genética
4.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102683

RESUMO

Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.


Assuntos
Proteínas de Homeodomínio , Tretinoína , Camundongos , Animais , Tretinoína/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos Transgênicos , Tubo Neural/metabolismo , Hibridização in Situ Fluorescente , Elementos Facilitadores Genéticos
5.
Clin Epigenetics ; 15(1): 28, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803844

RESUMO

BACKGROUND: Intraductal papillary mucinous neoplasms (IPMNs), a type of cystic pancreatic cancer (PC) precursors, are increasingly identified on cross-sectional imaging and present a significant diagnostic challenge. While surgical resection of IPMN-related advanced neoplasia, i.e., IPMN-related high-grade dysplasia or PC, is an essential early PC detection strategy, resection is not recommended for IPMN-low-grade dysplasia (LGD) due to minimal risk of carcinogenesis, and significant procedural risks. Based on their promising results in prior validation studies targeting early detection of classical PC, DNA hypermethylation-based markers may serve as a biomarker for malignant risk stratification of IPMNs. This study investigates our DNA methylation-based PC biomarker panel (ADAMTS1, BNC1, and CACNA1G genes) in differentiating IPMN-advanced neoplasia from IPMN-LGDs. METHODS: Our previously described genome-wide pharmaco-epigenetic method identified multiple genes as potential targets for PC detection. The combination was further optimized and validated for early detection of classical PC in previous case-control studies. These promising genes were evaluated among micro-dissected IPMN tissue (IPMN-LGD: 35, IPMN-advanced neoplasia: 35) through Methylation-Specific PCR. The discriminant capacity of individual and combination of genes were delineated through Receiver Operating Characteristics curve analysis. RESULTS: As compared to IPMN-LGDs, IPMN-advanced neoplasia had higher hypermethylation frequency of candidate genes: ADAMTS1 (60% vs. 14%), BNC1 (66% vs. 3%), and CACGNA1G (25% vs. 0%). We observed Area Under Curve (AUC) values of 0.73 for ADAMTS1, 0.81 for BNC1, and 0.63 for CACNA1G genes. The combination of the BNC1/ CACNA1G genes resulted in an AUC of 0.84, sensitivity of 71%, and specificity of 97%. Combining the methylation status of the BNC1/CACNA1G genes, blood-based CA19-9, and IPMN lesion size enhanced the AUC to 0.92. CONCLUSION: DNA-methylation based biomarkers have shown a high diagnostic specificity and moderate sensitivity for differentiating IPMN-advanced neoplasia from LGDs. Addition of specific methylation targets can improve the accuracy of the methylation biomarker panel and enable the development of noninvasive IPMN stratification biomarkers.


Assuntos
Neoplasias Císticas, Mucinosas e Serosas , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Metilação de DNA , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Biomarcadores Tumorais/genética , Neoplasias Císticas, Mucinosas e Serosas/genética , DNA , Medição de Risco , Neoplasias Pancreáticas
6.
Sci Transl Med ; 15(683): eade6023, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791210

RESUMO

The emergence of the SARS-CoV-2 Omicron sublineages resulted in increased transmission rates and reduced protection from vaccines. To counteract these effects, multiple booster strategies were used in different countries, although data comparing their efficiency in improving protective immunity remain sparse, especially among vulnerable populations, including older adults. The inactivated CoronaVac vaccine was among the most widely distributed vaccine worldwide and was essential in the early control of SARS-CoV-2-related hospitalizations and deaths. However, it is not well understood whether homologous versus heterologous booster doses in those fully vaccinated with CoronaVac induce distinct humoral responses or whether these responses vary across age groups. We analyzed plasma antibody responses from CoronaVac-vaccinated younger or older individuals who received a homologous CoronaVac or heterologous BNT162b2 or ChAdOx1 booster vaccine. All three evaluated boosters resulted in increased virus-specific IgG titers 28 days after the booster dose. However, we found that both IgG titers against SARS-CoV-2 Spike or RBD and neutralization titers against Omicron sublineages were substantially reduced in participants who received homologous CoronaVac compared with the heterologous BNT162b2 or ChAdOx1 booster. This effect was specifically prominent in recipients >50 years of age. In this group, the CoronaVac booster induced low virus-specific IgG titers and failed to elevate neutralization titers against any Omicron sublineage. Our results point to the notable inefficiency of CoronaVac immunization and boosting in mounting protective antiviral humoral immunity, particularly among older adults, during the Omicron wave. These observations also point to benefits of heterologous regimens in high-risk populations fully vaccinated with CoronaVac.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Idoso , Vacina BNT162 , SARS-CoV-2 , Imunoglobulina G , Anticorpos Antivirais
7.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194909, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682583

RESUMO

Protein kinase M zeta, PKMζ, is a brain enriched kinase with a well characterized role in Long-Term Potentiation (LTP), the activity-dependent strengthening of synapses involved in long-term memory formation. However, little is known about the molecular mechanisms that maintain the tissue specificity of this kinase. Here, we characterized the epigenetic factors, mainly DNA methylation, regulating PKMζ expression in the human brain. The PRKCZ gene has an upstream promoter regulating Protein kinase C ζ (PKCζ), and an internal promoter driving PKMζ expression. A demethylated region, including a canonical CREB binding site, situated at the internal promoter was only observed in human CNS tissues. The induction of site-specific hypermethylation of this region resulted in decreased CREB1 binding and downregulation of PKMζ expression. Noteworthy, CREB binding sites were absent in the upstream promoter of PRKCZ locus, suggesting a specific mechanism for regulating PKMζ expression. These observations were validated using a system of human neuronal differentiation from induced pluripotent stem cells (iPSCs). CREB1 binding at the internal promoter was detected only in differentiated neurons, where PKMζ is expressed. The same epigenetic mechanism in the context of CREB binding site was identified in other genes involved in neuronal differentiation and LTP. Additionally, aberrant DNA hypermethylation at the internal promoter was observed in cases of Alzheimer's disease, correlating with decreased expression of PKMζ in patient brains. Altogether, we present a conserved epigenetic mechanism regulating PKMζ expression and other genes enhanced in the CNS with possible implications in neuronal differentiation and Alzheimer's disease.


Assuntos
Doença de Alzheimer , Humanos , Metilação de DNA , Epigênese Genética , Potenciação de Longa Duração/fisiologia , Encéfalo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética
8.
Med ; 3(5): 325-334.e4, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35399324

RESUMO

Background: The SARS-CoV-2 Omicron variant became a global concern due to its rapid spread and displacement of the dominant Delta variant. We hypothesized that part of Omicron's rapid rise was based on its increased ability to cause infections in persons that are vaccinated compared to Delta. Methods: We analyzed nasal swab PCR tests for samples collected between December 12 and 16, 2021, in Connecticut when the proportion of Delta and Omicron variants was relatively equal. We used the spike gene target failure (SGTF) to classify probable Delta and Omicron infections. We fitted an exponential curve to the estimated infections to determine the doubling times for each variant. We compared the test positivity rates for each variant by vaccination status, number of doses, and vaccine manufacturer. Generalized linear models were used to assess factors associated with odds of infection with each variant among persons testing positive for SARS-CoV-2. Findings: For infections with high virus copies (Ct < 30) among vaccinated persons, we found higher odds that they were infected with Omicron compared to Delta, and that the odds increased with increased number of vaccine doses. Compared to unvaccinated persons, we found significant reduction in Delta positivity rates after two (43.4%-49.1%) and three vaccine doses (81.1%), while we only found a significant reduction in Omicron positivity rates after three doses (62.3%). Conclusion: The rapid rise in Omicron infections was likely driven by Omicron's escape from vaccine-induced immunity. Funding: This work was supported by the Centers for Disease Control and Prevention (CDC).


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Vacinas contra COVID-19 , Hospitalização , Humanos , SARS-CoV-2/genética
9.
Cell Rep Med ; 3(4): 100583, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480627

RESUMO

The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%-80% increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform across populations, we partner with public health programs from all six states in New England in the United States. We compare logistic growth rates during each variant's respective emergence period, finding that Delta emerged 1.37-2.63 times faster than Alpha (range across states). We compute variant-specific effective reproductive numbers, estimating that Delta is 63%-167% more transmissible than Alpha (range across states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1-10.9) times more viral RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence suggests that Delta's enhanced transmissibility can be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on underlying population attributes and sequencing data availability.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , New England/epidemiologia , Saúde Pública , SARS-CoV-2/genética
10.
medRxiv ; 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34642698

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta's infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ∼6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta's enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.

11.
Cancer Res ; 81(18): 4723-4735, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34247146

RESUMO

Leptomeningeal carcinomatosis (LC) occurs when tumor cells spread to the cerebrospinal fluid-containing leptomeninges surrounding the brain and spinal cord. LC is an ominous complication of cancer with a dire prognosis. Although any malignancy can spread to the leptomeninges, breast cancer, particularly the HER2+ subtype, is its most common origin. HER2+ breast LC (HER2+ LC) remains incurable, with few treatment options, and the molecular mechanisms underlying proliferation of HER2+ breast cancer cells in the acellular, protein, and cytokine-poor leptomeningeal environment remain elusive. Therefore, we sought to characterize signaling pathways that drive HER2+ LC development as well as those that restrict its growth to leptomeninges. Primary HER2+ LC patient-derived ("Lepto") cell lines in coculture with various central nervous system (CNS) cell types revealed that oligodendrocyte progenitor cells (OPC), the largest population of dividing cells in the CNS, inhibited HER2+ LC growth in vitro and in vivo, thereby limiting the spread of HER2+ LC beyond the leptomeninges. Cytokine array-based analyses identified Lepto cell-secreted GMCSF as an oncogenic autocrine driver of HER2+ LC growth. LC/MS-MS-based analyses revealed that the OPC-derived protein TPP1 proteolytically degrades GMCSF, decreasing GMCSF signaling and leading to suppression of HER2+ LC growth and limiting its spread. Finally, intrathecal delivery of neutralizing anti-GMCSF antibodies and a pan-Aurora kinase inhibitor (CCT137690) synergistically inhibited GMCSF and suppressed activity of GMCSF effectors, reducing HER2+ LC growth in vivo. Thus, OPC suppress GMCSF-driven growth of HER2+ LC in the leptomeningeal environment, providing a potential targetable axis. SIGNIFICANCE: This study characterizes molecular mechanisms that drive HER2+ leptomeningeal carcinomatosis and demonstrates the efficacy of anti-GMCSF antibodies and pan-Aurora kinase inhibitors against this disease.


Assuntos
Comunicação Autócrina , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Carcinomatose Meníngea/secundário , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular , Modelos Animais de Doenças , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Carcinomatose Meníngea/diagnóstico , Camundongos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Dev Biol ; 479: 61-76, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34310923

RESUMO

Meis genes are known to play important roles in the hindbrain and neural crest cells of jawed vertebrates. To explore the roles of Meis genes in head development during evolution of vertebrates, we have identified four meis genes in the sea lamprey genome and characterized their patterns of expression and regulation, with a focus on the hindbrain and pharynx. Each of the lamprey meis genes displays temporally and spatially dynamic patterns of expression, some of which are coupled to rhombomeric domains in the developing hindbrain and select pharyngeal arches. Studies of Meis loci in mouse and zebrafish have identified enhancers that are bound by Hox and TALE (Meis and Pbx) proteins, implicating these factors in the direct regulation of Meis expression. We examined the lamprey meis loci and identified a series of cis-elements conserved between lamprey and jawed vertebrate meis genes. In transgenic reporter assays we demonstrated that these elements act as neural enhancers in lamprey embryos, directing reporter expression in appropriate domains when compared to expression of their associated endogenous meis gene. Sequence alignments reveal that these conserved elements are in similar relative positions of the meis loci and contain a series of consensus binding motifs for Hox and TALE proteins. This suggests that ancient Hox and TALE-responsive enhancers regulated expression of ancestral vertebrate meis genes in segmental domains in the hindbrain and have been retained in the meis loci during vertebrate evolution. The presence of conserved Meis, Pbx and Hox binding sites in these lamprey enhancers links Hox and TALE factors to regulation of lamprey meis genes in the developing hindbrain, indicating a deep ancestry for these regulatory interactions prior to the divergence of jawed and jawless vertebrates.


Assuntos
Lampreias/genética , Tubo Neural/embriologia , Rombencéfalo/embriologia , Animais , Sítios de Ligação , Padronização Corporal/genética , Sequência Conservada , Elementos Facilitadores Genéticos , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/metabolismo , Lampreias/metabolismo , Proteína Meis1/genética , Proteína Meis1/metabolismo , Crista Neural/metabolismo , Tubo Neural/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Rombencéfalo/metabolismo , Fatores de Transcrição/metabolismo
13.
Dev Biol ; 477: 284-292, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102167

RESUMO

Homeotic genes (Hox genes) are homeodomain-transcription factors involved in conferring segmental identity along the anterior-posterior body axis. Molecular characterization of HOX protein function raises some interesting questions regarding the source of the binding specificity of the HOX proteins. How do HOX proteins regulate common and unique target specificity across space and time? This review attempts to summarize and interpret findings in this area, largely focused on results from in vitro and in vivo studies in Drosophila and mouse systems. Recent studies related to HOX protein binding specificity compel us to reconsider some of our current models for transcription factor-DNA interactions. It is crucial to study transcription factor binding by incorporating components of more complex, multi-protein interactions in concert with small changes in binding motifs that can significantly impact DNA binding specificity and subsequent alterations in gene expression. To incorporate the multiple elements that can determine HOX protein binding specificity, we propose a more integrative Cooperative Binding model.


Assuntos
DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Genes Homeobox , Proteínas de Homeodomínio/genética , Humanos , Modelos Genéticos , Ligação Proteica
14.
J Dev Biol ; 9(1)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546292

RESUMO

Knowledge of the diverse DNA binding specificities of transcription factors is important for understanding their specific regulatory functions in animal development and evolution. We have examined the genome-wide binding properties of the mouse HOXB1 protein in embryonic stem cells differentiated into neural fates. Unexpectedly, only a small number of HOXB1 bound regions (7%) correlate with binding of the known HOX cofactors PBX and MEIS. In contrast, 22% of the HOXB1 binding peaks display co-occupancy with the transcriptional repressor REST. Analyses revealed that co-binding of HOXB1 with PBX correlates with active histone marks and high levels of expression, while co-occupancy with REST correlates with repressive histone marks and repression of the target genes. Analysis of HOXB1 bound regions uncovered enrichment of a novel 15 base pair HOXB1 binding motif HB1RE (HOXB1 response element). In vitro template binding assays showed that HOXB1, PBX1, and MEIS can bind to this motif. In vivo, this motif is sufficient for direct expression of a reporter gene and over-expression of HOXB1 selectively represses this activity. Our analyses suggest that HOXB1 has evolved an association with REST in gene regulation and the novel HB1RE motif contributes to HOXB1 function in part through a repressive role in gene expression.

15.
Genes Dev ; 34(23-24): 1680-1696, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184220

RESUMO

Gene duplication and divergence is a major driver in the emergence of evolutionary novelties. How variations in amino acid sequences lead to loss of ancestral activity and functional diversification of proteins is poorly understood. We used cross-species functional analysis of Drosophila Labial and its mouse HOX1 orthologs (HOXA1, HOXB1, and HOXD1) as a paradigm to address this issue. Mouse HOX1 proteins display low (30%) sequence similarity with Drosophila Labial. However, substituting endogenous Labial with the mouse proteins revealed that HOXA1 has retained essential ancestral functions of Labial, while HOXB1 and HOXD1 have diverged. Genome-wide analysis demonstrated similar DNA-binding patterns of HOXA1 and Labial in mouse cells, while HOXB1 binds to distinct targets. Compared with HOXB1, HOXA1 shows an enrichment in co-occupancy with PBX proteins on target sites and exists in the same complex with PBX on chromatin. Functional analysis of HOXA1-HOXB1 chimeric proteins uncovered a novel six-amino-acid C-terminal motif (CTM) flanking the homeodomain that serves as a major determinant of ancestral activity. In vitro DNA-binding experiments and structural prediction show that CTM provides an important domain for interaction of HOXA1 proteins with PBX. Our findings show that small changes outside of highly conserved DNA-binding regions can lead to profound changes in protein function.


Assuntos
Motivos de Aminoácidos/genética , Proteínas de Drosophila/genética , Evolução Molecular , Proteínas de Homeodomínio/genética , Animais , Drosophila melanogaster/classificação , Drosophila melanogaster/genética , Estudo de Associação Genômica Ampla , Camundongos , Modelos Moleculares , Ligação Proteica/genética , Domínios Proteicos , Relação Estrutura-Atividade
16.
Nucleic Acids Res ; 48(9): 4756-4768, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32232341

RESUMO

Estrogen receptors (ER) are activated by the steroid hormone 17ß-estradiol. Estrogen receptor alpha (ER-α) forms a regulatory network in mammary epithelial cells and in breast cancer with the transcription factors FOXA1 and GATA3. GATA3 is one of the most frequently mutated genes in breast cancer and is capable of specifying chromatin localization of FOXA1 and ER-α. How GATA3 mutations found in breast cancer impact genomic localization of ER-α and the transcriptional network downstream of ER-α and FOXA1 remains unclear. Here, we investigate the function of a recurrent patient-derived GATA3 mutation (R330fs) on this regulatory network. Genomic analysis indicates that the R330fs mutant can disrupt localization of ER-α and FOXA1. Loci co-bound by all three factors are enriched for genes integral to mammary gland development as well as epithelial cell biology. This gene set is differentially regulated in GATA3 mutant cells in culture and in tumors bearing similar mutations in vivo. The altered distribution of ER-α and FOXA1 in GATA3-mutant cells is associated with altered chromatin architecture, which leads to differential gene expression. These results suggest an active role for GATA3 zinc finger 2 mutants in ER-α positive breast tumors.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Feminino , Humanos , Mutação , Transcrição Gênica
17.
Genesis ; 57(7-8): e23306, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31111645

RESUMO

One of the major regulatory challenges of animal development is to precisely coordinate in space and time the formation, specification, and patterning of cells that underlie elaboration of the basic body plan. How does the vertebrate plan for the nervous and hematopoietic systems, heart, limbs, digestive, and reproductive organs derive from seemingly similar population of cells? These systems are initially established and patterned along the anteroposterior axis (AP) by opposing signaling gradients that lead to the activation of gene regulatory networks involved in axial specification, including the Hox genes. The retinoid signaling pathway is one of the key signaling gradients coupled to the establishment of axial patterning. The nested domains of Hox gene expression, which provide a combinatorial code for axial patterning, arise in part through a differential response to retinoic acid (RA) diffusing from anabolic centers established within the embryo during development. Hence, Hox genes are important direct effectors of retinoid signaling in embryogenesis. This review focuses on describing current knowledge on the complex mechanisms and regulatory processes, which govern the response of Hox genes to RA in several tissue contexts including the nervous system during vertebrate development.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Tretinoína/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Sistema Cardiovascular/embriologia , Sistema Cardiovascular/metabolismo , Sistema Hematopoético/embriologia , Sistema Hematopoético/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Transdução de Sinais
18.
Nat Commun ; 10(1): 1189, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867425

RESUMO

In jawed vertebrates (gnathostomes), Hox genes play an important role in patterning head and jaw formation, but mechanisms coupling Hox genes to neural crest (NC) are unknown. Here we use cross-species regulatory comparisons between gnathostomes and lamprey, a jawless extant vertebrate, to investigate conserved ancestral mechanisms regulating Hox2 genes in NC. Gnathostome Hoxa2 and Hoxb2 NC enhancers mediate equivalent NC expression in lamprey and gnathostomes, revealing ancient conservation of Hox upstream regulatory components in NC. In characterizing a lamprey hoxα2 NC/hindbrain enhancer, we identify essential Meis, Pbx, and Hox binding sites that are functionally conserved within Hoxa2/Hoxb2 NC enhancers. This suggests that the lamprey hoxα2 enhancer retains ancestral activity and that Hoxa2/Hoxb2 NC enhancers are ancient paralogues, which diverged in hindbrain and NC activities. This identifies an ancestral mechanism for Hox2 NC regulation involving a Hox-TALE regulatory circuit, potentiated by inputs from Meis and Pbx proteins and Hox auto-/cross-regulatory interactions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes Homeobox/fisiologia , Proteínas de Homeodomínio/metabolismo , Crista Neural/embriologia , Vertebrados/genética , Animais , Animais Geneticamente Modificados , Sítios de Ligação/genética , Linhagem Celular , Sequência Conservada/fisiologia , Elementos Facilitadores Genéticos/genética , Proteínas de Homeodomínio/genética , Lampreias , Camundongos , Células-Tronco Embrionárias Murinas , Crista Neural/metabolismo , Alinhamento de Sequência , Vertebrados/embriologia , Peixe-Zebra
19.
Cell Stem Cell ; 22(5): 740-754.e7, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727682

RESUMO

Hox genes modulate the properties of hematopoietic stem cells (HSCs) and reacquired Hox expression in progenitors contributes to leukemogenesis. Here, our transcriptome and DNA methylome analyses revealed that Hoxb cluster and retinoid signaling genes are predominantly enriched in LT-HSCs, and this coordinate regulation of Hoxb expression is mediated by a retinoid-dependent cis-regulatory element, distal element RARE (DERARE). Deletion of the DERARE reduced Hoxb expression, resulting in changes to many downstream signaling pathways (e.g., non-canonical Wnt signaling) and loss of HSC self-renewal and reconstitution capacity. DNA methyltransferases mediate DNA methylation on the DERARE, leading to reduced Hoxb cluster expression. Acute myeloid leukemia patients with DNMT3A mutations exhibit DERARE hypomethylation, elevated HOXB expression, and adverse outcomes. CRISPR-Cas9-mediated specific DNA methylation at DERARE attenuated HOXB expression and alleviated leukemogenesis. Collectively, these findings demonstrate pivotal roles for retinoid signaling and the DERARE in maintaining HSCs and preventing leukemogenesis by coordinate regulation of Hoxb genes.


Assuntos
Epigênese Genética/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Proteínas de Homeodomínio/antagonistas & inibidores , Retinoides/farmacologia , Animais , Elementos Facilitadores Genéticos/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Células HEK293 , Hematopoese/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retinoides/química
20.
Dev Biol ; 432(1): 151-164, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982536

RESUMO

Hoxa1 has important functional roles in neural crest specification, hindbrain patterning and heart and ear development, yet the enhancers and genes that are targeted by Hoxa1 are largely unknown. In this study, we performed a comprehensive analysis of Hoxa1 target genes using genome-wide Hoxa1 binding data in mouse ES cells differentiated with retinoic acid (RA) into neural fates in combination with differential gene expression analysis in Hoxa1 gain- and loss-of-function mouse and zebrafish embryos. Our analyses reveal that Hoxa1-bound regions show epigenetic marks of enhancers, occupancy of Hox cofactors and differential expression of nearby genes, suggesting that these regions are enriched for enhancers. In support of this, 80 of them mapped to regions with known reporter activity in transgenic mouse embryos based on the Vista enhancer database. Two additional enhancers in Dok5 and Wls1 were shown to mediate neural expression in developing mouse and zebrafish. Overall, our analysis of the putative target genes indicate that Hoxa1 has input to components of major signaling pathways, including Wnt, TGF-ß, Hedgehog and Hippo, and frequently does so by targeting multiple components of a pathway such as secreted inhibitors, ligands, receptors and down-stream components. We also identified genes implicated in heart and ear development, neural crest migration and neuronal patterning and differentiation, which may underlie major Hoxa1 mutant phenotypes. Finally, we found evidence for a high degree of evolutionary conservation of many binding regions and downstream targets of Hoxa1 between mouse and zebrafish. Our genome-wide analyses in ES cells suggests that we have enriched for in vivo relevant target genes and pathways associated with functional roles of Hoxa1 in mouse development.


Assuntos
Células-Tronco Embrionárias/fisiologia , Proteínas de Homeodomínio/genética , Neurônios/fisiologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Redes Reguladoras de Genes , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Crista Neural/citologia , Neurônios/citologia , Neurônios/metabolismo , Gravidez , Rombencéfalo/citologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Tretinoína/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...